

Spatial and spectral evolution of microwave and X-ray sources during the limb solar flare February 5, 2023

Julia Shamsutdinova¹, Larisa Kashapova¹, Zhentong Li² and Yang Su^{2,3}

¹ Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia

² Key Laboratory of Dark Matter and Space Astronomy, PMO CAS, Nanjing, China

³ School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China

The 15th Russian-Chinese Workshop on Space Weather, September 9-13, 2024, Irkutsk

MOTIVATION

CSHKP model (standard model)

[Jeffrey, Natasha L.S., 2020]

Model of circle flare [Reid, H.A.S., 2012]

Hanaoka model [Hanaoka, 1997]

For the same population of electron:

- 1. Microwave (MW) and X-Ray temporal profiles coincide
- 2. Plasma parameters obtained from the X-ray and microwave ranges must be consistent

For numerical flare models, it is important to study events where there is a consistency between parameters taken from different spectral ranges without any theoretical speculation.

BUT - in reality, it is rare ->

It should be very simple and weak flare (!!) but with 2D observations in MW and X-rays.

6-12 GHz 2 m. 192 antennas

Siberian Radioheliograph (SRH) 12-24 GHz 1 m. 207 antennas

- T-shape grid
- Frequency range: 3 24 GHz 3-6 GHz 3 m. 129 antennas
- Temporal resolution: 2 3 seconds
- Spatial resolution: 30 7 arcsec
- Sensitivity: 4 25*10⁻³ s.f.u.

[Altyntsev et al., 2020, STP]

Advanced Space-based Solar observatory / Hard X-ray Imager (ASO-S/HXI)

- Energy range: 10 300 keV
- Temporal resolution: 0.125 1 seconds
- Spatial resolution: 3.2`` @ 32 keV
- FOV: 40.3 arcsec

[Gan et al., 2023, Solar Physics]

[badary.iszf.irk.ru]

^{3/12}

SOL2023-02-05T03:24:38

INSTRUMENTS

- ASO-S/HXI 10-300 keV
- GOES 1–8 Å
- SRH 3–12 GHz
- NoRP (3.75 and 9.4 GHz)
- SDO/HMI and SDO/AIA

SPECTRAL ANALYSIS

SPATIAL STRUCTURE OF THE FLARE LOOP

Estimation the magnetic field -125 strength at the observed MW flare source using Dulk (1985) formula: -150-175Size of the flare source = $30 \operatorname{arcsec}$ / [arcsec] -200 Photon spectral index = 3.3 Electron flux = $3 \cdot 10^{27}$ erg/s -225 Peak frequency = 5.2 GHz -250 Magnetic field = 130 G -275 2023-02-05T03:24:41.370

SDO/AIA 94 Å 03:24:36 UT

SRH 11.8 GHz 03:24:41 UT

-1075 -1050 -1025 -1000 -975 -950 -925 X [arcsec]

SPECTRUM FOR TIME MOMENT WITH A JET

Time intervals UT	δ_{MW}	$\delta_{\rm HXI}$	T _{HXI} , MK	$\underset{10^{47} \text{ cm}^{-3}}{\text{EM}_{\text{HXI}}}$	T _{GOES} , MK	EM _{GOES} , 10 ⁴⁷ cm ⁻²
03:23:52-03:24:08	8.4 ± 1.3^{1}	_	_	_	11.9 ± 0.7	3.1 ± 2.0
03:24:08-03:24:30	3.8 ± 0.3^{1}	4.4 ± 0.3	15.0 ± 5.3	1.9 ± 55.0	12.8 ± 0.7	5.0 ± 2.0
03:24:30-03:24:44	3.3 ± 0.2^1	3.6 ± 0.1	31.5 ± 0.8	0.1 ± 0.2	13.3 ± 0.7	10.0 ± 2.0
03:24:44-03:24:54	3.3 ± 0.3^1	3.5 ± 0.1	25.2 ± 0.6	0.4 ± 0.5	13.7 ± 0.7	13.2 ± 2.0
03:24:54-03:25:12	3.0 ± 0.4^{1}	3.4 ± 0.1	24.3 ± 0.9	0.3 ± 0.6	14.2 ± 0.7	16.7 ± 2.0
03:25:12-03:25:26	$\begin{array}{c} [2.5\pm0.1]^1 \\ 4.2\pm0.1^2 \end{array}$	3.7 ± 0.5	13.3 ± 0.9	10.8 ± 79.0	14.4 ± 0.7	20.2 ± 2.0

More details in the paper doi:10.1007/s11207-024-02331-w

¹ The electron index obtained from the average MW spectrum.

² The electron index obtained from imaging spectroscopy.

soft-hard-soft

(false hardening of the microwave spectral index due to the jet contribution)

SUMMARY

- The main source of energy release was a small compact loop with a magnetic field of 130 G;
- At the preflare phase the microwave spectrum indicates gyrosynchrotron emission of thermal electrons, which preceded the appearance of accelerated electrons (heating -> acceleration). Is it typical for the Hanaoka model?
- Spectral indices of accelerating electrons obtained from the data of the two ranges are consistent at all stages of the flare evolution, that indicates a simple topology of the event;
- Hardening of average microwave spectra at the end of impulsive phase was caused by the contribution of jet MW emission.

SUMMARY

- The main source of energy release was a small compact loop with a magnetic field of 130 G;
- At the preflare phase the microwave spectrum indicates gyrosynchrotron emission of thermal electrons, which preceded the appearance of accelerated electrons (heating -> acceleration). Is it typical for the Hanaoka model?
- Spectral indices of accelerating electrons obtained from the data of the two ranges are consistent at all stages of the flare evolution, that indicates a simple topology of the event;
- Hardening of average microwave spectra at the end of impulsive phase was caused by the contribution of jet MW emission.

THANK YOU FOR ATTENTION!

THANK YOU FOR ATTENTION!

Метод восстановления пространственной структуры микроволновых источников по данным СРГ

