

THE 15TH RUSSIAN-CHINESE WORKSHOP ON SPACE WEATHER

September 9-13, 2024, Irkutsk, Russia

DIAGNOSTICS OF CORONAL PLASMA USING THE EXACT SOLUTION

OF THE EVOLUTION EQUATION FOR SLOW MAGNETOACOUSTIC AND ENTROPY WAVES

D.I. Zavershinskii, D.S. Riashchikov , N.E. Molevich

What's being observed?

Moskovskoye shosse, 34, Samara, 443086, Russia, tel.: +7 (846) 335-18-26, fax: +7 (846) 335-18-36, www.ssau.ru, e-mail: ssau@ssau.ru

MHD-structures in solar atmosphere

prominences

 $\bf loops$

streamers

3.5

 2.0

1.5

12:48

12:54

 $\frac{3.5}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

 $\frac{1}{2}$

 0.4

 0.2 0.0 -0.2 \perp $\mathbb Z$

 $\vert\vert$

 \leq -0.6 WANG ET AL.

THE ASTROPHYSICAL JOURNAL LETTERS, 811:L13 (7pp), 2015 September 20

13:00

13:06

Time (UT) on 28-Dec-2013

 $13:12$

13:18

How is it modeled?

34, Moskovskoye shosse, Samara, 443086, Russia, tel.: +7 (846) 335-18-26, fax: +7 (846) 335-18-36 www.ssau.ru, e-mail: ssau@ssau.ru

Basic equations and assumptions

$$
\rho \frac{dV_z}{dt} = -\frac{\partial P}{\partial z}
$$

\n
$$
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial z} (\rho V_z) = 0
$$

\n
$$
C_{V\infty} \frac{dT}{dt} - \frac{k_B \cdot T}{m\rho} \cdot \frac{d\rho}{dt} = -Q(\rho, T) + \frac{1}{\rho} \kappa_z \frac{\partial^2 T}{\partial z^2}
$$

\n
$$
P = \frac{k_B \cdot T \cdot \rho}{m}
$$

\n
$$
Q(\rho, T) = I(\rho, T) - H(\rho, T)
$$

- The influence of gravitational stratification is weak ()
- The effect of waveguide dispersion is weak ()
- The plasma is highly magnetized ()
- The effect of viscosity is negligible ()
- Plasma homogeneous along the waveguide

Evolutionary equation and dispersion properties

Characteristic thermal conduction spatial scale

(Defined by plasma heating and cooling rates)

Zavershinskii et al 2023

 \overline{a} Zavershinskii et al 2021

Characteristic temporal scales

Reduced evolutionary equation

$$
\left[\frac{\partial^3 \widetilde{a}_j}{\partial \widetilde{t}^3} - \gamma \frac{\partial^3 \widetilde{a}_j}{\partial \widetilde{t} \partial \widetilde{z}^2} = -\widetilde{d}\left(\frac{\partial^4 \widetilde{a}_j}{\partial \widetilde{t}^2 \partial \widetilde{z}^2} - \frac{\partial^4 \widetilde{a}_j}{\partial \widetilde{z}^4}\right)\right]
$$

Here, we have introduced the dimensionless perturbation of plasma parameter \tilde{a}_i . The index j defines the parameter under study. In other words, we use the following values $[\tilde{a}_\rho = \rho_1/\rho_0]$ for density perturbation, $[\tilde{a}_P = P_1/P_0]$ for pressure perturbation, $[\tilde{a}_T = T_1/T_0]$ for temperature perturbation, and $[\tilde{a}_u = u_1/c_{Si}]$ for velocity perturbation. We also use dimensionless coordinate $[\tilde{z} = z/L]$, and time $[\tilde{t} = t/t_L, t_L = c_{Si}/L]$. Here, L is the characteristic spatial scale.

$$
\widetilde{d} = \frac{1}{\widetilde{\tau}_{\text{cond}}} = \frac{t_L}{\tau_{\text{cond}}}, \quad \tau_{\text{cond}} = \frac{L^2 C_{\text{V}} \rho_0}{\kappa},
$$

Some initial signal Of optional type and form

Reflecting boundaries

Solution of reduced evolutionary equation

$$
a_{\rho}(z,t) = a_{\rho 0}(z,t) + \sum_{n=1}^{\infty} a_{\rho n}(z,t).
$$

$$
a_{\rho n}(z,t) = C_{1\rho n} e^{\omega_{\text{EI}}t} \cos(kz) +
$$
\n
$$
C_{0\rho n} e^{\omega_{\text{AI}}t} [\cos(\omega_{\text{AR}}t + kz - \phi_{\rho n}) + \cos(\omega_{\text{AR}}t - kz - \phi_{\rho n})],
$$
\nTwo

Two Magnetoacoustic waves

$$
C_{0\rho n} = \frac{\sqrt{C_{2\rho n}^2 + C_{3\rho n}^2}}{2}, \quad \phi_{\rho n} = \arctan\left(\frac{C_{3\rho n}}{C_{2\rho n}}\right)
$$

$$
a_{\rho 0}(z, t) = I_{10} = \frac{1}{l} \int_0^l \rho_{\rm in}(z, 0) dz.
$$

Non-oscillating background

$$
\begin{pmatrix}\n1 & 1 & 0 \\
\omega_{\text{EI}} & -\omega_{\text{AI}} & \omega_{\text{AR}} \\
\omega_{\text{EI}}^2 & (\omega_{\text{AI}}^2 - \omega_{\text{AR}}^2) & -2\omega_{\text{AR}}\omega_{\text{AI}}\n\end{pmatrix}\n\begin{pmatrix}\nC_{1n} \\
C_{2n} \\
C_{3n}\n\end{pmatrix} =\n\begin{pmatrix}\nI_{1n} \\
I_{2n} \\
I_{3n}\n\end{pmatrix}.
$$

$$
I_{1n} = \frac{2}{l} \int_0^l \rho_{\text{in}}(z, 0) \cos(kz) dz,
$$

\n
$$
I_{2n} = \frac{2}{l} \int_0^l \frac{\partial \rho(z, t)}{\partial t} \Big|_{t=0} \cos(kz) dz,
$$

\n
$$
I_{3n} = \frac{2}{l} \int_0^l \frac{\partial^2 \rho(z, t)}{\partial t^2} \Big|_{t=0} \cos(kz) dz.
$$

Moskovskoye shosse, 34, Samara, 443086, Russia, tel.: +7 (846) 335-18-26, fax: +7 (846) 335-18-36, www.ssau.ru, e-mail: ssau@ssau.ru

That's all nice, but..... Is it really working?

Comparison of analytical and numerical solutions

How to apply it?

Moskovskoye shosse, 34, Samara, 443086, Russia, tel.: +7 (846) 335-18-26, fax: +7 (846) 335-18-36, www.ssau.ru, e-mail: ssau@ssau.ru

Distribution of energy between modes

$$
\mathcal{R} = \sum_{n=1}^{\infty} C_{1n}^{2} / \sum_{n=1}^{\infty} 4C_{0n}^{2} = \frac{Es}{As},
$$

We can estimate **distribution** of perturbation full energy **between modes!!!**

Different distribution -> Different Evolution

$$
a_{\rho,in}(z,0) = A_{\rho} \exp\left[-\left(z - z_0\right)^2 / w\right], \quad a_{P,in}(z,0) = A_P \exp\left[-\left(z - z_0\right)^2 / w\right],
$$

$$
a_{T,in}(z,0) = a_{P,in}(z,0) - a_{P,in}(z,0), \quad a_{u,in}(z,0) = 0.
$$
 (21)

Here, A_{ρ} and A_{P} are dimensionless magnitudes of the density and pressure variations; w and z_0 are the effective width and position of the perturbing pulse, respectively.

Fitting observations

S Expression for phase shifts and amplitudes

$$
\phi_{T\rho} = \phi_{Tn} - \phi_{\rho n} = \arctan\left(\frac{-\left(\omega_{\text{AI}}^2 + \omega_{\text{AR}}^2\right)\sin 2\phi_{\rho u}}{\left(\omega_{\text{AI}}^2 + \omega_{\text{AR}}^2\right)\cos 2\phi_{\rho u} + k^2}\right).
$$

$$
\phi_{\rho u} = \phi_{\rho n} - \phi_{un} = \arctan\left(\frac{-\omega_{\text{AR}}}{\omega_{\text{AI}}}\right),
$$

$$
C_{0Tn} = C_{0\rho n} \sqrt{\left(\frac{\omega_{\text{AI}}^2 + \omega_{\text{AR}}^2}{k^2}\right)^2 + 2\left(\frac{\omega_{\text{AI}}^2 + \omega_{\text{AR}}^2}{k^2}\right)\cos 2\phi_{\rho u} + 1}
$$

$$
C_{0\rho n} = C_{0un} \frac{k}{\sqrt{\omega_{\text{AI}}^2 + \omega_{\text{AR}}^2}}
$$

Phase shifts of the first three harmonics

The way to apply theoretical model

Observed signal

- Intensity (in different channels)
- Doppler shifts
- Phase shifts between ρ , T, V

- Thermal conductivity coefficient
- Mode composition of the original signal
- Constraints of the heating function
- etc

THANK YOU

ул. Московское шоссе, д. 34, г. Самара, 443086 Ten.: +7 (846) 335-18-26, факс: +7 (846) 335-18-36
Сайт: www.ssau.ru, e-mail: ssau@ssau.ru