

Huairou Solar Observing Station, National Astronomical Observatories Chinese Academy of Sciences 20240911

The Chinese Meridian Project II (CMP-phase II) aims to establish a comprehensive ground-based space environment monitoring system

Full-disk Magnetograph Telescope

FeI 5324.19Å and H \$ 4861.34Å;

alternately measuring at these two wavelengths, to acquire **vector magnetic fields** and **velocity fields** at 532.4nm, as well as longitudinal magnetic fields and velocity fields at 486.1 nm. ____

Full-disk Chromospheric Telescope

H a 6562.8Å and CaII8542.1Å;

alternately measuring **velocity field** and **monochromatic image** at these two wavelengths.

Solar Full-disk Multi-layer Magnetograph

The instrument has now entered its official observation and operational phase ;

Station: Ganyu Solar Observatory station, Jiangsu Province, China.

Scientific PI : Professor Yuanyong Deng Chief Designer: Dr Yingzi Sun

Technical Parameters

怀柔太阳观测基地 Huairou Solar Observing Station National Astronomical Observations Chinese Academy of Sciences

No.	Parameters	Full-disk Magnetograph Telescope	Full-disk Chromospheric Telescope
1	Aperture	Ф120mm	Ф200mm
2	λ	5324 Å; 4861Å	6563 Å ; 8542Å
3	FWHM	0.1 Å (@5324 Å); 0.085Å (@4861Å)	0.25 Å (@6563 Å); 0.44Å (@8542Å)
4	FOV	Φ34′	Ф35′
5	Spatial resolution	2″	1.5″
6	velocity measurement accuracy	100m/s (15min)	100m/s (15min)
7	line-of-sight magnetic field sensitivity	5Gauss (15min)	
8	transverse magnetic field sensitivity	200Gauss (15min)	
9	time resolution	15min	1s (burst mode)

5324-0.08 Å, 2023-09-22T04:43:11 UT

The core innovative device is LCVRs based Lyot-Filter

First implementation of liquid crystal filters in a solar telescope(From materials to softwares, all made in china)

The totally application of LCVR in astronomy achieved multi-channel spectral line observation and every spectral line can quickly scan its profile

Liquid crystal magnetic filter

Liquid crystal chromospheric filter

liquid Crystal Filter

Compared with traditional mechanical Lyot-Filter, there are some advancements:

- modulation response time at every wavelength point reduce : from 10 seconds to 1 mili-second
- 2. Reduced weight and length at least by half
- 3. Simpler structure and better sealing performance

traditional mechanical Lyot-Filter

liquid crystal Lyot- filter

Full-disk Filtergram Samples (FeI532.4nm, Hβ486.1nm, Hα656.3nm, CaII854.2nm)

Four spectral lines form heights from the solar photosphere to the mid-toupper chromosphere, revealing the three-dimensional spatial distribution of different types of solar activity

Data

Spectral line profile scanning of the chromospheric H a (6563 Å) and CaII (8542 Å) lines 6563-1.0 Å, 2023-04-11 Our LCVR based Filte

Our LCVR based Filter can reduce the wavelength adjustment of the single spectral point from seconds to milli-seconds. The time bottleneck is no longer the previous mechanical execution, but the single frame integration time.

If we observe 81 wavelength points in the profile the H β , this new type Filter greatly reduced the time .From over 10 minutes in the past to the present-no minutes in the

10

H-alpha wavelength scanning

FeI 5324 Å Doppler map (±0.4Å, 21 points)

Data

Longitudinal magnetic field in the chromosphere and photosphere

4861-0.12 Å, 2023-06-06T02:28:33 UT SFMM Solar-Y

5324-0.08 Å, 2023-06-06T06:03:08 UT

Solar-X

Photosphere FeI 5324

Full-disk longitudinal magetogram local region vector magnetogram NOAA AR 13321 @ 2023-06-02T02:32:54 UT 5324-0.08 Å, 2023-06-02T02:32:54 UT SFMM Solar-X Solar-Y NOAA AR 13319 @ 2023-06-02T02:32:54 UT Solar-X Solar-X

SFMM has successfully obtained high-quality data since Oct.

2023

data !

Welcome everyone to collaborate and use this scientific

Thank you! 谢谢!

Liquid Crystal Waveplate Extremely Narrowband Birefringent Filter

Our new type Filter fills the gap in China astronomy.From materials to softwares, all "Made in China". All completed by small team that I am responsible.This new type Filter can be customized according to scientist requirements, both narrowband and broadband can be customized according to "what you want"

怀柔"高信噪比" 裂距磁图。

20230418 白杨 15 手 动换波长 21 波长点, 耗时 15 分钟,正负 0.4 埃 左右旋各 128 帧, 20ms 曝光 液晶型透过

南北极取 4x5.6 平方角分,标准 偏差值 ±(3-5.5) 高斯,(3.2-8)高 斯;极区磁元 40-300 高斯

