

INSTITUTE OF SOLAR-TERRESTRIAL PHYSICS SIBERIAN BRANCH OF RUSSIAN ACADEMY OF SCIENCES

THE 15TH RUSSIAN-CHINESE WORKSHOP ON SPACE WEATHER

September 9–13, 2024, Irkutsk, Russia

PiB and Airglow Bursts during Strong Storm-Time Geomagnetic Disturbances

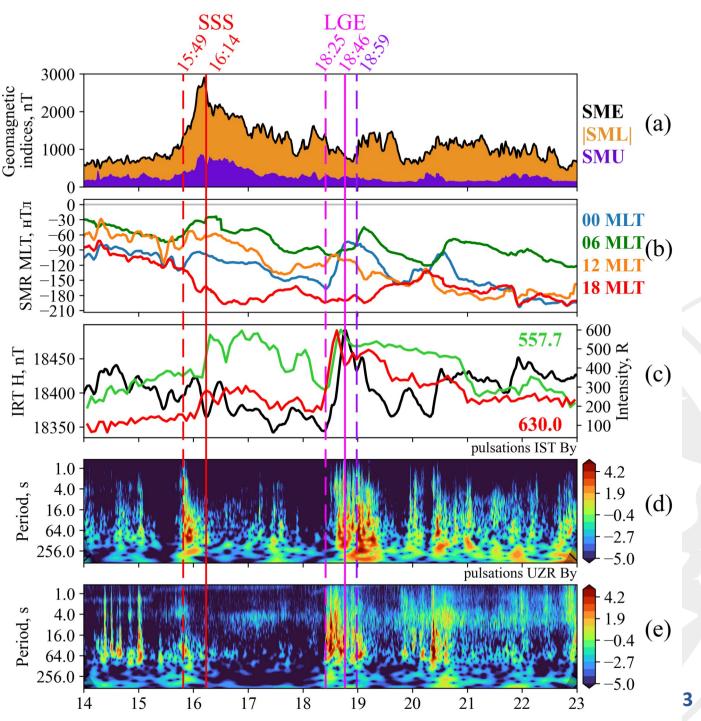
<u>R.A. Marchuk¹</u>, V.V. Mishin¹, Yu.V. Penskikh¹, Yu.Yu. Klibanova², and A.V. Mikhalev¹

1 - Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia

2 - Federal State Budgetary Educational Institution of Higher Education «Irkutsk State Agrarian University named after A.A. Ezhevsky», Irkutsk, Russia

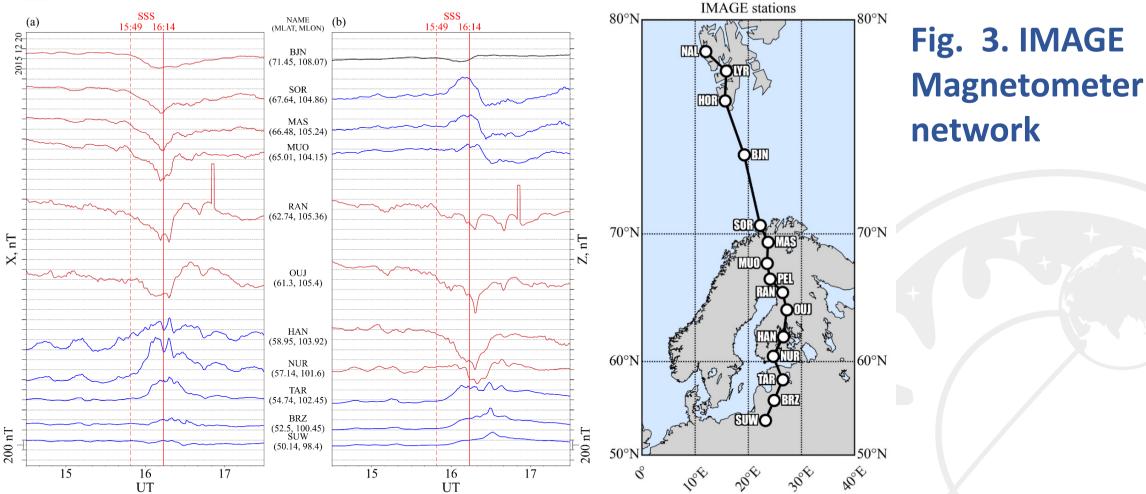
September 9–13, 2024, Irkutsk, Russia

INTRODUCTION


We report on the novel features of stormtime, midlatitude PiB/PiC geomagnetic pulsations, ionospheric and field-aligned currents, and oxygen, O1S and O1D, emissions at 557.7 and 630.0 nm, respectively. The distinct characteristic of the super substorm or SSS (AE < -2500 nT) was the presence of bay-like geomagnetic variations with the X and Z components with the opposite signs in the northern and southern sections of the IMAGE chain near 18 MLT. Using the magnetogram inversion technique (ISTP MIT) we obtained the MLT-MLAT distribution (map) of equivalent and field-aligned currents (FACs) revealing an additional westward electrojet to the north of the usual eastward current. For the first time we have shown that such a current system provides the observed distribution of geomagnetic variations along the 18 MLT meridian. We also revealed a localized geomagnetic event during which the magnitudes of the H geomagnetic component, PiB/PiC pulsations, and oxygen emissions at mid latitudes were more than twice greater than during the super substorm.

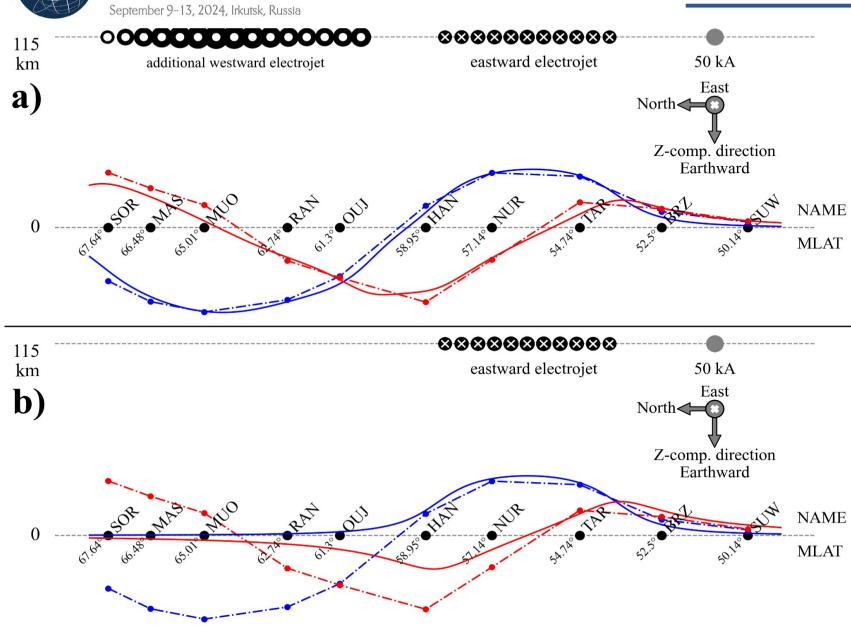
September 9–13, 2024, Irkutsk, Russia

Fig. 1. 20 Dec 2015 storm, variations in:


- a) <u>SME</u>, <u>SMU</u> and <u>SML</u> indices of geomagnetic activity;
- b) <u>SMR00</u>, <u>SMR06</u>, <u>SMR12</u>, <u>SMR18</u> indices for the ring current (mean index, in the midnight and in the dawn sectors)
- c) Geomagnetic field <u>H-component at the IRK</u> (<u>1-min data</u>) and the [OI] <u>557.7 nm</u> and <u>630.0 nm</u> emission intensities at Tory station; d) and e) are dynamic spectra for the <u>By-</u> <u>component of geomagnetic pulsations</u> at the IST (CGM: 66.28°) and UZR (CGM: 48.5°); shown is the amplitude variation dependence (color scale on the right in relative unities)

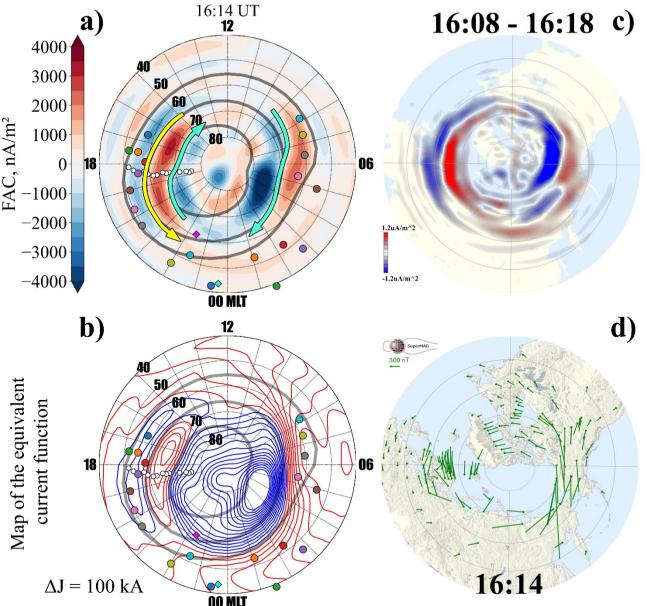
September 9–13, 2024, Irkutsk, Russia

SUPER SUBSTORM


↑ Fig. 2. Variations in the geomagnetic field X- (a) and Z- (b) components from the IMAGE magnetometer network during the SSS. The blue (red) color shows positive (negative) bays.

SUPER SUBSTORM

Fig. 4. Modeling the <u>X</u>- and <u>Z</u>components on the Earth surface along the IMAGE meridian in the presence of:


a) the eastward electrojet(EEJ), additional westwardeletrojet (WEJ);

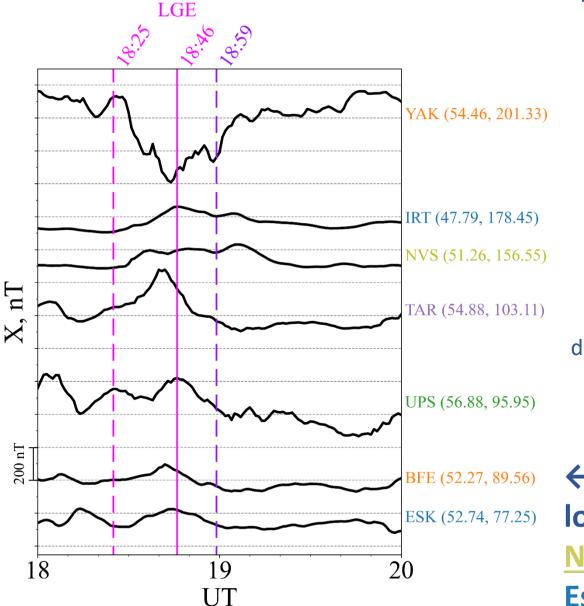
b) the eastward electrojet only. The solid lines represent the simulated field; the intermittent line shows the field observed at the IMAGE stations at 16:14 UT.

September 9–13, 2024, Irkutsk, Russia

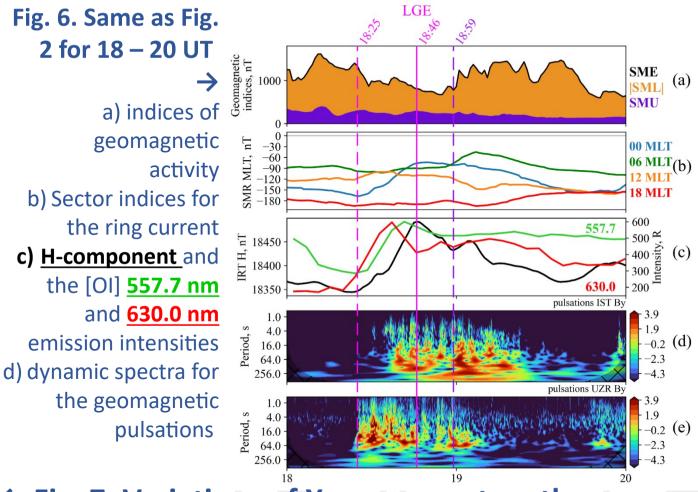
SUPER SUBSTORM

c) Fig. 5. Maps for SSS :

a) Field Aligned Current (FAC) map was constructed using the magnetogram inversion technique (MIT). The <u>red</u> (dark blue) color denotes the <u>upward</u> (downward) currents. fat grey lines are boundaries of FAC regions R0, R1, R2 (from the pole). Thick lines with arrows show ionospheric currents: <u>yellow</u> (eastward) and <u>cyan (westward);</u>


b) MIT built map for equivalent currents;

c) AMPERE FAC map;


d) SuperMAG map for the magnetic field variations. <u>Magnetic field vectors</u> are rotated 90° clockwise, showing the direction of equivalent ionospheric currents

September 9–13, 2024, Irkutsk, Russia

LOCALIZED GEOMAGNETIC EVENT

7.

 ← Fig. 7. Variations of X component on the longitude network of stations: <u>Yakutsk</u>, <u>Irkutsk</u>, <u>Novosibirsk</u>, <u>Tartu</u>, <u>Uppsala</u>, <u>Brorfelde</u>, Eskdalemuir

- The formation of an additional westward electrojet (AWEJ) north of the eastward one (EEJ) during the 20 Dec 2015 super substorm causes the sign change in the X- and Z- components at the IMAGE chain of stations. It is obvious from the ISTP MIT and SuperMAG FAC maps.
- We built a simple model of a location of both electrojets (AWEJ and EEJ) in one dusk sector that demonstrates that the MIT FAC maps corresponds to the observed distribution of geomagnetic variations.
- Using data from ISTP observatories, we addressed the evolution of a previously unobserved localized geomagnetic event in the near-midnight sector. During the LGE, we observed attenuations in the PiB power at high-latitudes. We assume that there is a relation between the LGE and the ring current and/or particle injection from BBFs.
- At mid-latitudes, the growth in the [OI] 557.7 and 630.0 nm emission intensities is followed by an increase in the SME during an SSS and by a positive bays in the H-component of the geomagnetic field at the IRK observatory during the LGE.

THANKS FOR YOUR ATTENTION